In the forms given in Introduction to Colloid and Surface Chemistry by Duncan J. Shaw, publisher Butterworth-Heinemann. Data entry by Dienkuan Donn. Markup by meditor.

Brownian Motion x  = 2 D t , D f  = T k , f  = 6 a η π

Spreading Wetting S  = - Δ G s A  = γ SG - ( γ LG + γ SL ) , Young's equation 0 = - γ S + γ SL + π SG + γ LG cos ( θ )

Adhesional Wetting, Dupre equation W A  = - Δ G a a  = γ LG + γ SG - γ SL , Young-Dupre equation W a  = γ LG ( 1 + cos ( θ ) )

Immersional Wetting - Δ G i  = γ SG - γ SL  = γ LG ( cos ( θ ) ) , Contact Angles p = 2 γ cos ( θ ) r , p  = 2 γ r

Adsorption Isotherms, Langmuir Isotherm q = K a q m c 1 + K a c  , Freundlich Isotherm q = K f c n , where q = x m

Gouy-Chapman d 2 ψ d x 2  = 2 e n 0 z ε sinh ( e ψ z T k ) , d ψ d x  = sinh ( e ψ z 2 T k ) 8 T k n 0 ε , ψ  = 2 k t e z ln ( 1 + γ e - κ x 1 - γ e - κ x ) , where γ  = - 1 + e e ψ 0 z 2 T k 1 + e e ψ 0 z 2 T k , and κ  = 2 e 2 n 0 z 2 T ε k  = 2 N A c e 2 z 2 T ε k  = 2 F 2 c z 2 T ε k , in which F is coulombs/volts, at 25 C κ  = 0.329e+10 c z 2 mol dm -3 2 m -1 . σ 0  = sinh ( e ψ 0 z 2 T k ) 8 T ε k n 0

Debye-Huckel Approximation, When e ψ 0 z 2 T k  is far less than 1 then e e ψ 0 z 2 T k  ~= 1 + e ψ 0 z 2 T k , ψ  = ψ 0 e - κ x , σ 0  = ε κ ψ 0

Stern Layer, As above substitute ψ 0  with ψ d . σ 1  = σ m 1 + e φ + e ψ d z T k ( N A n 0 v m )

Capacitances C 1  = σ 0 ψ 0 - ψ d  = ε δ , C 2  = σ 0 ψ d , ψ d  = C 1 ψ 0 C 1 + C 2 , at low potentials, 25 C C 2  = ε κ  = 2.28 c z 2 mol dm -3 2 F m -2

Surface Potentials d ζ d pAg ( ζ ->0 )  = d ψ 0 d pAg d ψ d d ψ 0 ( ζ ->0 )  = - 59 ( C 1 C 1 + C 2 ) mV

Huckel Equation u E  = v E E  = ε ζ 1.5 η , Smoluchowski Equation u E  = v E E  = ε ζ η , Electro-Osmosis d V EO d t  = A V EO  = A E ε ζ η

Colloidal Stability V = V A + V R  where V R  = e - H κ ( 32 T 2 a ε γ 2 k 2 π e 2 z 2 ) , and V A  = ( 1 2 x ) ( - A 12 )  = - A a 12 H

A 132  = ( A 11 2 - A 33 2 ) ( A 22 2 - A 33 2 ) , A 131  = ( A 11 2 - A 33 2 ) 2

Coagulation Kinetics - d n d t  = k 2 n 2 , 1 n - 1 n 0  = k 2 t , k 2  = 4 T k 3 η , W = k 2 k 2